RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

1976, Volume 141

| General information | Contents | Forward links |


Geometric problems of the theory of infinite-dimensional probability distributions



This book is cited in the following Math-Net.Ru publications:
  1. Infinite-dimensional conic Steiner formula
    M. K. Dospolova, D. N. Zaporozhets
    Zap. Nauchn. Sem. POMI, 2024, 535, 105–119
  2. Grassmann angles of infinite-dimensional cones
    M. K. Dospolova
    Zap. Nauchn. Sem. POMI, 2023, 525, 51–70
  3. Mixed volume of infinite-dimensional convex compact sets
    M. K. Dospolova
    Zap. Nauchn. Sem. POMI, 2022, 510, 98–123
  4. Grassmann angles and absorption probabilities of Gaussian convex hulls
    F. Götze, Z. Kabluchko, D. Zaporozhets
    Zap. Nauchn. Sem. POMI, 2021, 501, 126–148
  5. Gaussian convex bodies: a non-asymptotic approach
    G. Paouris, P. Pivovarov, P. Valettas
    Zap. Nauchn. Sem. POMI, 2017, 457, 286–316
  6. On an exponential functional for Gaussian processes and its geometric foundations
    R. A. Vitale
    Zap. Nauchn. Sem. POMI, 2017, 457, 101–113
  7. Duality and free measures in vector spaces; spectral theory and the actions of non locally compact groups
    A. M. Vershik
    Zap. Nauchn. Sem. POMI, 2017, 457, 74–100
  8. Mean width of regular polytopes and expected maxima of correlated Gaussian variables
    Z. Kabluchko, A. E. Litvak, D. Zaporozhets
    Zap. Nauchn. Sem. POMI, 2015, 442, 75–96
  9. Measures and Dirichlet forms under the Gelfand transform
    M. Hinz, D. Kelleher, A. Teplyaev
    Zap. Nauchn. Sem. POMI, 2012, 408, 303–322
  10. Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields
    D. N. Zaporozhets, Z. Kabluchko
    Zap. Nauchn. Sem. POMI, 2012, 408, 187–196
  11. The Monge problem in $\mathbb R^d$: Variations on a theme
    Thierry Champion, Luigi De Pascale
    Zap. Nauchn. Sem. POMI, 2011, 390, 182–200
  12. Weizsäcker phenomenon and Gaussian Lebesgue–Rokhlin space
    V. N. Sudakov
    Zap. Nauchn. Sem. POMI, 2009, 364, 200–234
  13. Estimating a monotone function, being observe in the white noise
    K. L. Zilberburg
    Zap. Nauchn. Sem. POMI, 2007, 341, 124–133
  14. What does a typical Markov operator look like?
    A. M. Vershik
    Algebra i Analiz, 2005, 17:5, 91–104
  15. Optimality conditions and exact solutions to the two-dimensional Monge–Kantorovich problem
    V. L. Levin
    Zap. Nauchn. Sem. POMI, 2004, 312, 150–164
  16. Random Linear Combinations of Functions from $L_1$
    P. G. Grigor'ev
    Mat. Zametki, 2003, 74:2, 192–220
  17. Optimality Conditions for Smooth Monge Solutions of the Monge–Kantorovich problem
    V. L. Levin
    Funktsional. Anal. i Prilozhen., 2002, 36:2, 38–44
  18. Existence and Uniqueness of a Measure-Preserving Optimal Mapping in a General Monge–Kantorovich Problem
    V. L. Levin
    Funktsional. Anal. i Prilozhen., 1998, 32:3, 79–82
  19. On duality theory for non-topological variants of the mass transfer problem
    V. L. Levin
    Mat. Sb., 1997, 188:4, 95–126
  20. On the Sum of Two Closed Algebras of Continuous Functions on a Compactum
    V. A. Medvedev
    Funktsional. Anal. i Prilozhen., 1993, 27:1, 33–36
  21. Some results on logarithmic derivatives of measures on a locally convex space
    N. V. Norin, O. G. Smolyanov
    Mat. Zametki, 1993, 54:6, 135–138
  22. Analytic properties of infinite-dimensional distributions
    V. I. Bogachev, O. G. Smolyanov
    Uspekhi Mat. Nauk, 1990, 45:3(273), 3–83


© Steklov Math. Inst. of RAS, 2025