Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations
This book is cited in the following Math-Net.Ru publications:
- On the theory of periodic solutions of systems of hyperbolic equations in the plane
A. T. Assanova
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022, 210, 35–48 - Criteria of unique solvability of nonlocal boundary-value problem for systems of hyperbolic equations with mixed derivatives
A. T. Asanova
Izv. Vyssh. Uchebn. Zaved. Mat., 2016:5, 3–21 - Application of the method of quasi-normal forms to the mathematical model of a single neuron
M. M. Preobrazhenskaya
Model. Anal. Inform. Sist., 2014, 21:5, 38–48 - Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators
A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
Trudy Inst. Mat. i Mekh. UrO RAN, 2010, 16:5, 82–94 - The buffer phenomenon in mathematical models of natural sciences
N. Kh. Rozov
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010:3, 58–63 - Extremal dynamics of the generalized Hutchinson equation
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov
Zh. Vychisl. Mat. Mat. Fiz., 2009, 49:1, 76–89 - Resonance Dynamics of Nonlinear Flutter Systems
A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
Trudy Mat. Inst. Steklova, 2008, 261, 154–175 - The Buffer Phenomenon in One-Dimensional Piecewise Linear Mapping in Radiophysics
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov
Mat. Zametki, 2007, 81:4, 507–514 - The problem of birth of autowaves in parabolic
systems with small diffusion
A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii
Mat. Sb., 2007, 198:11, 67–106 - New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems
A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
Trudy Mat. Inst. Steklova, 2007, 259, 106–133 - On the unique solvability of a family of two-point boundary-value problems for systems of ordinary differential equations
A. T. Asanova
Fundam. Prikl. Mat., 2006, 12:4, 21–39 - Smoothing the discontinuous oscillations in the mathematical model of an oscillator with distributed parameters
A. Yu. Kolesov, N. Kh. Rozov
Izv. RAN. Ser. Mat., 2006, 70:6, 129–152 - The buffer property in a non-classical hyperbolic
boundary-value problem from radiophysics
A. Yu. Kolesov, N. Kh. Rozov
Mat. Sb., 2006, 197:6, 63–96 - Buffer phenomenon in systems close to two-dimensional Hamiltonian ones
A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
Trudy Inst. Mat. i Mekh. UrO RAN, 2006, 12:1, 109–141 - Buffer phenomenon in systems with one and a half degrees of freedom
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov
Zh. Vychisl. Mat. Mat. Fiz., 2006, 46:9, 1582–1593 - Buffer Phenomenon in Nonlinear Physics
A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
Trudy Mat. Inst. Steklova, 2005, 250, 112–182 - The existence of countably many stable cycles for a generalized cubic Schrödinger equation in a planar domain
A. Yu. Kolesov, N. Kh. Rozov
Izv. RAN. Ser. Mat., 2003, 67:6, 137–168 - Multifrequency parametric resonance in a non-linear wave equation
A. Yu. Kolesov, N. Kh. Rozov
Izv. RAN. Ser. Mat., 2002, 66:6, 49–64 - Impact of quadratic non-linearity on the dynamics
of periodic solutions of a wave equation
A. Yu. Kolesov, N. Kh. Rozov
Mat. Sb., 2002, 193:1, 93–118 - The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
A. Yu. Kolesov, N. Kh. Rozov
Mat. Zametki, 2001, 69:6, 866–875 - The buffer property in resonance systems of non-linear hyperbolic equations
A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
Uspekhi Mat. Nauk, 2000, 55:2(332), 95–120 - Parametric excitation of high-mode oscillations for a non-linear telegraph equation
A. Yu. Kolesov, N. Kh. Rozov
Mat. Sb., 2000, 191:8, 45–68 - Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain
A. Yu. Kolesov, N. Kh. Rozov
TMF, 2000, 125:2, 205–220
- Evgenii Frolovich Mishchenko (on the 90th anniversary of his birth)
D. V. Anosov, S. M. Aseev, R. V. Gamkrelidze, S. P. Konovalov, M. S. Nikol'skii, N. Kh. Rozov
Uspekhi Mat. Nauk, 2012, 67:2(404), 193–207
© , 2025