RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

1998, Volume 222

| General information | Contents | Forward links |


Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations



This book is cited in the following Math-Net.Ru publications:
  1. On the theory of periodic solutions of systems of hyperbolic equations in the plane
    A. T. Assanova
    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2022, 210, 35–48
  2. Criteria of unique solvability of nonlocal boundary-value problem for systems of hyperbolic equations with mixed derivatives
    A. T. Asanova
    Izv. Vyssh. Uchebn. Zaved. Mat., 2016:5, 3–21
  3. Application of the method of quasi-normal forms to the mathematical model of a single neuron
    M. M. Preobrazhenskaya
    Model. Anal. Inform. Sist., 2014, 21:5, 38–48
  4. Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators
    A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
    Trudy Inst. Mat. i Mekh. UrO RAN, 2010, 16:5, 82–94
  5. The buffer phenomenon in mathematical models of natural sciences
    N. Kh. Rozov
    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010:3, 58–63
  6. Extremal dynamics of the generalized Hutchinson equation
    S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov
    Zh. Vychisl. Mat. Mat. Fiz., 2009, 49:1, 76–89
  7. Resonance Dynamics of Nonlinear Flutter Systems
    A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
    Trudy Mat. Inst. Steklova, 2008, 261, 154–175
  8. The Buffer Phenomenon in One-Dimensional Piecewise Linear Mapping in Radiophysics
    S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov
    Mat. Zametki, 2007, 81:4, 507–514
  9. The problem of birth of autowaves in parabolic systems with small diffusion
    A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii
    Mat. Sb., 2007, 198:11, 67–106
  10. New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems
    A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
    Trudy Mat. Inst. Steklova, 2007, 259, 106–133
  11. On the unique solvability of a family of two-point boundary-value problems for systems of ordinary differential equations
    A. T. Asanova
    Fundam. Prikl. Mat., 2006, 12:4, 21–39
  12. Smoothing the discontinuous oscillations in the mathematical model of an oscillator with distributed parameters
    A. Yu. Kolesov, N. Kh. Rozov
    Izv. RAN. Ser. Mat., 2006, 70:6, 129–152
  13. The buffer property in a non-classical hyperbolic boundary-value problem from radiophysics
    A. Yu. Kolesov, N. Kh. Rozov
    Mat. Sb., 2006, 197:6, 63–96
  14. Buffer phenomenon in systems close to two-dimensional Hamiltonian ones
    A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
    Trudy Inst. Mat. i Mekh. UrO RAN, 2006, 12:1, 109–141
  15. Buffer phenomenon in systems with one and a half degrees of freedom
    S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov
    Zh. Vychisl. Mat. Mat. Fiz., 2006, 46:9, 1582–1593
  16. Buffer Phenomenon in Nonlinear Physics
    A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
    Trudy Mat. Inst. Steklova, 2005, 250, 112–182
  17. The existence of countably many stable cycles for a generalized cubic Schrödinger equation in a planar domain
    A. Yu. Kolesov, N. Kh. Rozov
    Izv. RAN. Ser. Mat., 2003, 67:6, 137–168
  18. Multifrequency parametric resonance in a non-linear wave equation
    A. Yu. Kolesov, N. Kh. Rozov
    Izv. RAN. Ser. Mat., 2002, 66:6, 49–64
  19. Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation
    A. Yu. Kolesov, N. Kh. Rozov
    Mat. Sb., 2002, 193:1, 93–118
  20. The Parametric Buffer Phenomenon for a Singularly Perturbed Telegraph Equation with a Pendulum Nonlinearity
    A. Yu. Kolesov, N. Kh. Rozov
    Mat. Zametki, 2001, 69:6, 866–875
  21. The buffer property in resonance systems of non-linear hyperbolic equations
    A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov
    Uspekhi Mat. Nauk, 2000, 55:2(332), 95–120
  22. Parametric excitation of high-mode oscillations for a non-linear telegraph equation
    A. Yu. Kolesov, N. Kh. Rozov
    Mat. Sb., 2000, 191:8, 45–68
  23. Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain
    A. Yu. Kolesov, N. Kh. Rozov
    TMF, 2000, 125:2, 205–220


  24. Evgenii Frolovich Mishchenko (on the 90th anniversary of his birth)
    D. V. Anosov, S. M. Aseev, R. V. Gamkrelidze, S. P. Konovalov, M. S. Nikol'skii, N. Kh. Rozov
    Uspekhi Mat. Nauk, 2012, 67:2(404), 193–207


© Steklov Math. Inst. of RAS, 2025