The Pontryagin maximum principle and optimal economic growth problems
This book is cited in the following Math-Net.Ru publications:
- On an adjoint trajectory in infinite-horizon control problems
D. V. Khlopin
Trudy Inst. Mat. i Mekh. UrO RAN, 2024, 30:3, 274–292 - Existence of an optimal stationary solution in the KPP model under nonlocal competition
A. A. Davydov, A. S. Platov, D. V. Tunitsky
Trudy Inst. Mat. i Mekh. UrO RAN, 2024, 30:3, 113–121 - On the problem of optimal stimulation of demand
A. S. Aseev, S. P. Samsonov
Trudy Inst. Mat. i Mekh. UrO RAN, 2024, 30:2, 23–38 - Analisys of a growth model with a production CES-function
Anastasiia A. Usova, Alexander M. Tarasyev
Mat. Teor. Igr Pril., 2022, 14:4, 96–114 - Projection Method for Infinite-Horizon Economic Growth Problems
B. M. Arystanbekov, N. B. Melnikov
Trudy Inst. Mat. i Mekh. UrO RAN, 2022, 28:3, 17–29 - Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint
S. M. Aseev
Trudy Inst. Mat. i Mekh. UrO RAN, 2021, 27:2, 35–48 - Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion
A. O. Belyakov, A. A. Davydov
Trudy Mat. Inst. Steklova, 2021, 315, 64–73 - An estimate of a smooth approximation of the production function for integrtaing Hamiltonian systems
Alexander M. Tarasyev, Anastasiia A. Usova
Mat. Teor. Igr Pril., 2020, 12:1, 91–115 - Existence of Optimal Stationary States of Exploited Populations with Diffusion
A. A. Davydov
Trudy Mat. Inst. Steklova, 2020, 310, 135–142 - Numerical methods for construction of value functions in optimal control problems on an infinite horizon
A. L. Bagno, A. M. Tarasyev
Izv. IMI UdGU, 2019, 53, 15–26 - Estimate for the Accuracy of a Backward Procedure for the Hamilton–Jacobi Equation in an Infinite-Horizon Optimal Control Problem
A. L. Bagno, A. M. Tarasyev
Trudy Mat. Inst. Steklova, 2019, 304, 123–136 - Optimal Policies in the Dasgupta–Heal–Solow–Stiglitz Model under Nonconstant Returns to Scale
S. M. Aseev, K. O. Besov, S. Yu. Kaniovski
Trudy Mat. Inst. Steklova, 2019, 304, 83–122 - On necessary limit gradients in control problems with infinite horizon
D. V. Khlopin
Trudy Inst. Mat. i Mekh. UrO RAN, 2018, 24:1, 247–256 - Asymptotics of value function in models of economic growth
A. L. Bagno, A. M. Tarasyev
Tambov University Reports. Series: Natural and Technical Sciences, 2018, 23:124, 605–616 - On the conditions on the integral payoff function in the games with random duration
Ekaterina V. Gromova, Anastasiya P. Malakhova, Anna V. Tur
Contributions to Game Theory and Management, 2017, 10, 94–99 - Stability properties of the value function in an infinite horizon optimal control problem
A. L. Bagno, A. M. Tarasyev
Trudy Inst. Mat. i Mekh. UrO RAN, 2017, 23:1, 43–56 - Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints
A. A. Krasovskii, P. D. Lebedev, A. M. Tarasyev
Zh. Vychisl. Mat. Mat. Fiz., 2017, 57:5, 768–782 - Predictive trajectories of economic development under structural changes
Alexandr M. Tarasyev, Anastasiya A. Usova, Yuliya V. Shmotina
Mat. Teor. Igr Pril., 2016, 8:3, 34–66 - On the Hamiltonian in infinite horizon control problems
D. V. Khlopin
Trudy Inst. Mat. i Mekh. UrO RAN, 2016, 22:4, 295–310 - Some facts about the Ramsey model
A. A. Krasovskii, P. D. Lebedev, A. M. Tarasyev
Trudy Inst. Mat. i Mekh. UrO RAN, 2016, 22:3, 160–168 - Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
S. M. Aseev
Trudy Inst. Mat. i Mekh. UrO RAN, 2016, 22:2, 18–27 - Optimal control for proportional economic growth
A. V. Kryazhimskiy, A. M. Tarasyev
Trudy Inst. Mat. i Mekh. UrO RAN, 2015, 21:2, 115–133 - Proportional economic growth under conditions of limited natural resources
A. V. Kryazhimskiy, A. M. Tarasyev, A. A. Usova, W. Wang
Trudy Mat. Inst. Steklova, 2015, 291, 138–156 - Problem of optimal endogenous growth with exhaustible resources and possibility of a technological jump
K. O. Besov
Trudy Mat. Inst. Steklova, 2015, 291, 56–68 - On the boundedness of optimal controls in infinite-horizon problems
S. M. Aseev
Trudy Mat. Inst. Steklova, 2015, 291, 45–55 - Adjoint variables and intertemporal prices in infinite-horizon optimal control problems
S. M. Aseev
Trudy Mat. Inst. Steklova, 2015, 290, 239–253 - Optimal trajectory construction by integration of Hamiltonian dynamics in models of economic growth under resource constraints
A. M. Taras'ev, A. A. Usova, W. Wang, O. V. Russkikh
Trudy Inst. Mat. i Mekh. UrO RAN, 2014, 20:4, 258–276 - Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
S. M. Aseev, V. M. Veliov
Trudy Inst. Mat. i Mekh. UrO RAN, 2014, 20:3, 41–57 - On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function
K. O. Besov
Trudy Mat. Inst. Steklova, 2014, 284, 56–88 - Necessary conditions of overtaking equilibrium for infinite horizon differential games
Dmitry V. Khlopin
Mat. Teor. Igr Pril., 2013, 5:2, 105–136 - On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems
S. M. Aseev
Trudy Inst. Mat. i Mekh. UrO RAN, 2013, 19:4, 15–24 - On necessary boundary conditions for strongly optimal control in infinite horizon control problems
D. V. Khlopin
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013:1, 49–58 - On necessary conditions of optimality for infinite horizon problems
D. V. Khlopin
Izv. IMI UdGU, 2012:1(39), 143–144 - A one-sector model of economic growth with a nonlinear production function and related environmental quality
Elena A. Rovenskaya
Mat. Teor. Igr Pril., 2012, 4:4, 73–92 - Stabilizing the Hamiltonian system for constructing optimal trajectories
A. M. Tarasyev, A. A. Usova
Trudy Mat. Inst. Steklova, 2012, 277, 257–274 - Asymptotic properties of optimal solutions and value functions in optimal control problems with infinite time horizon
A. A. Usova
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012:1, 77–95 - Influence of production function parameters on the solution and value function in optimal control problem
A. M. Tarasyev, A. A. Usova
Mat. Teor. Igr Pril., 2011, 3:3, 85–115 - A model of economic growth and related environmental quality
Elena A. Rovenskaya
Mat. Teor. Igr Pril., 2011, 3:3, 67–84 - Optimal growth in a two-sector economy facing an expected random shock
Sergey Aseev, Konstantin Besov, Simon-Erik Ollus, Tapio Palokangas
Trudy Inst. Mat. i Mekh. UrO RAN, 2011, 17:2, 271–299 - Nonlinear stabilizer constructing for two-sector economic growth model
A. M. Tarasyev, A. A. Usova
Trudy Inst. Mat. i Mekh. UrO RAN, 2010, 16:5, 297–307 - Construction of a regulator for the Hamiltonian system in a two-sector economic growth model
A. M. Tarasyev, A. A. Usova
Trudy Mat. Inst. Steklova, 2010, 271, 278–298 - Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum
A. V. Arguchintsev, V. A. Dykhta, V. A. Srochko
Izv. Vyssh. Uchebn. Zaved. Mat., 2009:1, 3–43 - Construction of nonlinear regulators in economic growth models
A. A. Krasovskii, A. M. Taras'ev
Trudy Inst. Mat. i Mekh. UrO RAN, 2009, 15:3, 127–138 - Necessary Optimality Conditions for a Class of Optimal Control Problems with Discontinuous Integrand
A. I. Smirnov
Trudy Mat. Inst. Steklova, 2008, 262, 222–239 - Necessary Optimality Conditions for Nonautonomous Control Systems with an Infinite Time Horizon
N. A. Malysh
Trudy Mat. Inst. Steklova, 2008, 262, 187–195 - Properties of Hamiltonian Systems in the Pontryagin Maximum Principle for Economic Growth Problems
A. A. Krasovskii, A. M. Tarasyev
Trudy Mat. Inst. Steklova, 2008, 262, 127–145 - On a Class of Optimal Control Problems Arising in Mathematical Economics
S. M. Aseev, A. V. Kryazhimskii
Trudy Mat. Inst. Steklova, 2008, 262, 16–31
© , 2025