RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

2007, Volume 257

| General information | Contents | Forward links |


The Pontryagin maximum principle and optimal economic growth problems



This book is cited in the following Math-Net.Ru publications:
  1. On an adjoint trajectory in infinite-horizon control problems
    D. V. Khlopin
    Trudy Inst. Mat. i Mekh. UrO RAN, 2024, 30:3, 274–292
  2. Existence of an optimal stationary solution in the KPP model under nonlocal competition
    A. A. Davydov, A. S. Platov, D. V. Tunitsky
    Trudy Inst. Mat. i Mekh. UrO RAN, 2024, 30:3, 113–121
  3. On the problem of optimal stimulation of demand
    A. S. Aseev, S. P. Samsonov
    Trudy Inst. Mat. i Mekh. UrO RAN, 2024, 30:2, 23–38
  4. Analisys of a growth model with a production CES-function
    Anastasiia A. Usova, Alexander M. Tarasyev
    Mat. Teor. Igr Pril., 2022, 14:4, 96–114
  5. Projection Method for Infinite-Horizon Economic Growth Problems
    B. M. Arystanbekov, N. B. Melnikov
    Trudy Inst. Mat. i Mekh. UrO RAN, 2022, 28:3, 17–29
  6. Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint
    S. M. Aseev
    Trudy Inst. Mat. i Mekh. UrO RAN, 2021, 27:2, 35–48
  7. Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion
    A. O. Belyakov, A. A. Davydov
    Trudy Mat. Inst. Steklova, 2021, 315, 64–73
  8. An estimate of a smooth approximation of the production function for integrtaing Hamiltonian systems
    Alexander M. Tarasyev, Anastasiia A. Usova
    Mat. Teor. Igr Pril., 2020, 12:1, 91–115
  9. Existence of Optimal Stationary States of Exploited Populations with Diffusion
    A. A. Davydov
    Trudy Mat. Inst. Steklova, 2020, 310, 135–142
  10. Numerical methods for construction of value functions in optimal control problems on an infinite horizon
    A. L. Bagno, A. M. Tarasyev
    Izv. IMI UdGU, 2019, 53, 15–26
  11. Estimate for the Accuracy of a Backward Procedure for the Hamilton–Jacobi Equation in an Infinite-Horizon Optimal Control Problem
    A. L. Bagno, A. M. Tarasyev
    Trudy Mat. Inst. Steklova, 2019, 304, 123–136
  12. Optimal Policies in the Dasgupta–Heal–Solow–Stiglitz Model under Nonconstant Returns to Scale
    S. M. Aseev, K. O. Besov, S. Yu. Kaniovski
    Trudy Mat. Inst. Steklova, 2019, 304, 83–122
  13. On necessary limit gradients in control problems with infinite horizon
    D. V. Khlopin
    Trudy Inst. Mat. i Mekh. UrO RAN, 2018, 24:1, 247–256
  14. Asymptotics of value function in models of economic growth
    A. L. Bagno, A. M. Tarasyev
    Tambov University Reports. Series: Natural and Technical Sciences, 2018, 23:124, 605–616
  15. On the conditions on the integral payoff function in the games with random duration
    Ekaterina V. Gromova, Anastasiya P. Malakhova, Anna V. Tur
    Contributions to Game Theory and Management, 2017, 10, 94–99
  16. Stability properties of the value function in an infinite horizon optimal control problem
    A. L. Bagno, A. M. Tarasyev
    Trudy Inst. Mat. i Mekh. UrO RAN, 2017, 23:1, 43–56
  17. Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints
    A. A. Krasovskii, P. D. Lebedev, A. M. Tarasyev
    Zh. Vychisl. Mat. Mat. Fiz., 2017, 57:5, 768–782
  18. Predictive trajectories of economic development under structural changes
    Alexandr M. Tarasyev, Anastasiya A. Usova, Yuliya V. Shmotina
    Mat. Teor. Igr Pril., 2016, 8:3, 34–66
  19. On the Hamiltonian in infinite horizon control problems
    D. V. Khlopin
    Trudy Inst. Mat. i Mekh. UrO RAN, 2016, 22:4, 295–310
  20. Some facts about the Ramsey model
    A. A. Krasovskii, P. D. Lebedev, A. M. Tarasyev
    Trudy Inst. Mat. i Mekh. UrO RAN, 2016, 22:3, 160–168
  21. Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
    S. M. Aseev
    Trudy Inst. Mat. i Mekh. UrO RAN, 2016, 22:2, 18–27
  22. Optimal control for proportional economic growth
    A. V. Kryazhimskiy, A. M. Tarasyev
    Trudy Inst. Mat. i Mekh. UrO RAN, 2015, 21:2, 115–133
  23. Proportional economic growth under conditions of limited natural resources
    A. V. Kryazhimskiy, A. M. Tarasyev, A. A. Usova, W. Wang
    Trudy Mat. Inst. Steklova, 2015, 291, 138–156
  24. Problem of optimal endogenous growth with exhaustible resources and possibility of a technological jump
    K. O. Besov
    Trudy Mat. Inst. Steklova, 2015, 291, 56–68
  25. On the boundedness of optimal controls in infinite-horizon problems
    S. M. Aseev
    Trudy Mat. Inst. Steklova, 2015, 291, 45–55
  26. Adjoint variables and intertemporal prices in infinite-horizon optimal control problems
    S. M. Aseev
    Trudy Mat. Inst. Steklova, 2015, 290, 239–253
  27. Optimal trajectory construction by integration of Hamiltonian dynamics in models of economic growth under resource constraints
    A. M. Taras'ev, A. A. Usova, W. Wang, O. V. Russkikh
    Trudy Inst. Mat. i Mekh. UrO RAN, 2014, 20:4, 258–276
  28. Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions
    S. M. Aseev, V. M. Veliov
    Trudy Inst. Mat. i Mekh. UrO RAN, 2014, 20:3, 41–57
  29. On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function
    K. O. Besov
    Trudy Mat. Inst. Steklova, 2014, 284, 56–88
  30. Necessary conditions of overtaking equilibrium for infinite horizon differential games
    Dmitry V. Khlopin
    Mat. Teor. Igr Pril., 2013, 5:2, 105–136
  31. On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems
    S. M. Aseev
    Trudy Inst. Mat. i Mekh. UrO RAN, 2013, 19:4, 15–24
  32. On necessary boundary conditions for strongly optimal control in infinite horizon control problems
    D. V. Khlopin
    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013:1, 49–58
  33. On necessary conditions of optimality for infinite horizon problems
    D. V. Khlopin
    Izv. IMI UdGU, 2012:1(39), 143–144
  34. A one-sector model of economic growth with a nonlinear production function and related environmental quality
    Elena A. Rovenskaya
    Mat. Teor. Igr Pril., 2012, 4:4, 73–92
  35. Stabilizing the Hamiltonian system for constructing optimal trajectories
    A. M. Tarasyev, A. A. Usova
    Trudy Mat. Inst. Steklova, 2012, 277, 257–274
  36. Asymptotic properties of optimal solutions and value functions in optimal control problems with infinite time horizon
    A. A. Usova
    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012:1, 77–95
  37. Influence of production function parameters on the solution and value function in optimal control problem
    A. M. Tarasyev, A. A. Usova
    Mat. Teor. Igr Pril., 2011, 3:3, 85–115
  38. A model of economic growth and related environmental quality
    Elena A. Rovenskaya
    Mat. Teor. Igr Pril., 2011, 3:3, 67–84
  39. Optimal growth in a two-sector economy facing an expected random shock
    Sergey Aseev, Konstantin Besov, Simon-Erik Ollus, Tapio Palokangas
    Trudy Inst. Mat. i Mekh. UrO RAN, 2011, 17:2, 271–299
  40. Nonlinear stabilizer constructing for two-sector economic growth model
    A. M. Tarasyev, A. A. Usova
    Trudy Inst. Mat. i Mekh. UrO RAN, 2010, 16:5, 297–307
  41. Construction of a regulator for the Hamiltonian system in a two-sector economic growth model
    A. M. Tarasyev, A. A. Usova
    Trudy Mat. Inst. Steklova, 2010, 271, 278–298
  42. Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum
    A. V. Arguchintsev, V. A. Dykhta, V. A. Srochko
    Izv. Vyssh. Uchebn. Zaved. Mat., 2009:1, 3–43
  43. Construction of nonlinear regulators in economic growth models
    A. A. Krasovskii, A. M. Taras'ev
    Trudy Inst. Mat. i Mekh. UrO RAN, 2009, 15:3, 127–138
  44. Necessary Optimality Conditions for a Class of Optimal Control Problems with Discontinuous Integrand
    A. I. Smirnov
    Trudy Mat. Inst. Steklova, 2008, 262, 222–239
  45. Necessary Optimality Conditions for Nonautonomous Control Systems with an Infinite Time Horizon
    N. A. Malysh
    Trudy Mat. Inst. Steklova, 2008, 262, 187–195
  46. Properties of Hamiltonian Systems in the Pontryagin Maximum Principle for Economic Growth Problems
    A. A. Krasovskii, A. M. Tarasyev
    Trudy Mat. Inst. Steklova, 2008, 262, 127–145
  47. On a Class of Optimal Control Problems Arising in Mathematical Economics
    S. M. Aseev, A. V. Kryazhimskii
    Trudy Mat. Inst. Steklova, 2008, 262, 16–31


© Steklov Math. Inst. of RAS, 2025