RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

1977, Volume 70

| General information | Contents |


Computational methods and algorithms


A gap in the energy spectrum of the one-dimensional Dirac operator
L. A. Bordag
7
Convergence of the highest derivatives in projection methods
I. K. Daugavet
11
Foundation of the synthesis method
Yu. K. Dem'yanovich
19
Some imbedding theorems for the function spaces – $\mathscr L_{r,p,\theta}^{\lambda,\varphi,b_s}(G)$
V. P. Il'in
49
An application of a multipoint differential-difference scheme to a boundary-value problem
A. P. Kubanskaya
76
Analysis of singular matrix pencils
V. N. Kublanovskaya
89
Solution of the eigenvalue problem for a regular pencil $\lambda A_0-A_1$ with singular matrices
V. N. Kublanovskaya, T. Ya. Kon'kova
103
Solving the eigenvalue problem for matrices
V. N. Kublanovskaya, L. T. Savinova
124
Feasibility of parallel computations on a three-dimensional associative parallel processor
M. M. Lebedinskii
140
Strong capacity-estimates for “fractional” norms
V. G. Maz'ya
161
Use of a computer to find the number of regular pentagons that can simultaneously touch a given one
P. S. Pankov, S. L. Dolmatov
169
Conjugate gradient method for systems of nonlinear equations
G. V. Savinov
178
Implementation of some multioperations on sequential computers
T. N. Smirnova, A. A. Aleksandrova, N. B. Stciborskaya
184
Optimal schedulings with gaps for independent jobs in a service system with $N$ servers
K. V. Shakhbazyan, N. B. Lebedinskaya
205
Uniform convergence of the method of lines in the case of the first boundary-value problem for a nonlinear second-order parabolic equation
M. N. Yakovlev
232
Uniform convergence of the implicit scheme of the finite-difference method for solving the first boundary-value problem for a nonlinear second-order parabolic equation
M. N. Yakovlev
241
Solvability of the finite-difference equations of the implicit scheme for a nonlinear second-order parabolic equation
M. N. Yakovlev
256
A description of the algebras of analytic functions admitting localization of ideals
S. A. Apresyan
267
Matrix seminorms and related inequalities
V. V. Kolpakov
270


© Steklov Math. Inst. of RAS, 2025