RUS  ENG
Full version
JOURNALS // Annals of Pure and Applied Logic // Archive

Ann. Pure Appl. Logic, 2013, Volume 164, Issue 12, Pages 1201–1223 (Mi apal2)

This article is cited in 16 papers

Topological completeness of the provability logic GLP

L. Beklemishevabc, D. Gabelaiade

a Moscow M.V. Lomonosov State University, Russian Federation
b V.A. Steklov Mathematical Institute, RAS, Moscow, Russian Federation
c National Research University Higher School of Economics, Russian Federation
d TSU A. Razmadze Mathematical Institute, Tbilisi, Georgia
e The Free University of Tbilisi, Tbilisi, Georgia

Abstract: Provability logic $\mathbf{GLP}$ is well-known to be incomplete w.r.t. Kripke semantics. A natural topological semantics of $\mathbf{GLP}$ interprets modalities as derivative operators of a polytopological space. Such spaces are called GLP-spaces whenever they satisfy all the axioms of $\mathbf{GLP}$. We develop some constructions to build nontrivial GLP-spaces and show that $\mathbf{GLP}$ is complete w.r.t. the class of all GLP-spaces.

Received: 27.11.2011
Revised: 02.12.2012
Accepted: 14.12.2012

Language: English

DOI: 10.1016/j.apal.2013.06.008



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025