Abstract:
We consider the adiabatic limit for nonlinear dynamic equations of gauge field theory. Our main example of such equations is given by the Abelian $(2+1)$-dimensional Higgs model. We show next that the Taubes correspondence, which assigns pseudoholomorphic curves to solutions of Seiberg–Witten equations on symplectic 4-manifolds, may be interpreted as a complex analogue of the adiabatic limit construction in the $(2+1)$-dimensional case.