RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1981 Volume 45, Issue 1, Pages 3–22 (Mi im1545)

This article is cited in 65 papers

On integral inequalities for trigonometric polynomials and their derivatives

V. V. Arestov


Abstract: Let $\Phi^+$ be the set of nondecreasing functions $\varphi$ defined on $(0,\infty)$ which admit a representation $\varphi(u)=\psi(\ln u)$, where the function $\psi$ is convex (below) on $(-\infty,\infty)$. To the class $\Phi^+$ belong, for example, the functions $\ln u$, $\ln^+u$, $u^p$ when $p>0$, and also any function $\varphi$ which is convex on $(0,\infty)$. In this paper it is shown, in particular, that if $\varphi\in\Phi^+$, then for any trigonometric polynomial $T_n$ of order $n$ the following inequality holds for all natural numbers $r$:
$$ \int_0^{2\pi}\varphi\bigl(\bigl|T_n^{(r)}(t)|\bigr)\,dt\leqslant\int_0^{2\pi}\varphi\bigl(n^r\bigl|T_n(t)\bigr|\bigr)\,dt. $$
This inequality may be considered a generalization of the inequalities of S. N. Bernstein and A. Zygmund.
Bibliography: 16 titles.

UDC: 517.518

MSC: 42A05

Received: 24.09.1978


 English version:
Mathematics of the USSR-Izvestiya, 1982, 18:1, 1–17

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025