RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2022 Volume 86, Issue 6, Pages 123–142 (Mi im9241)

This article is cited in 2 papers

Arithmetic of certain $\ell$-extensions ramified at three places. III

L. V. Kuz'min

National Research Centre "Kurchatov Institute", Moscow

Abstract: Let $\ell$ be a regular odd prime, $K$ the $\ell$ th cyclotomic field and $K=k(\sqrt[\ell]{a}\,)$, where $a$ is a positive integer. Under the assumption that there are exactly three places ramified in the extension $K_\infty/k_\infty$, we study the $\ell$-component of the class group of the field $K$. We prove that in the case $\ell>3$ there always is an unramified extension $\mathcal{N}/K$ such that $G(\mathcal{N}/K)\cong (\mathbb Z/\ell\mathbb Z)^2$ and all places over $\ell$ split completely in the extension $\mathcal{N}/K$. In the case $\ell=3$ we give a complete description of the situation. Some other results are obtained.

Keywords: Iwasawa theory, Tate module, extensions with restricted ramification.

UDC: 511.62

Received: 09.07.2021
Revised: 05.01.2022

DOI: 10.4213/im9241


 English version:
Izvestiya: Mathematics, 2022, 86:6, 1143–1161

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024