RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 198, Pages 103–108 (Mi into880)

Nakhushev extremum principle for integro-differential operators

A. V. Pskhu

Institute of Applied Mathematics and Automation, Nalchik

Abstract: In this paper, we prove the extremum principle for an integro-differential operator with a kernel of a general form, which generalizes an analog of Fermat's extremum theorem for the Riemann–Liouville fractional derivative. Also, we formulate the weighted extremum principle and the extremum principles for integro-differential operators of convolution type and for some fractional differentiation operators.

Keywords: extremum principle, analog of Fermat's extremum theorem, integro-differential operator, Riemann–Liouville derivative, derivative of distributed order, convolution operator.

UDC: 517.23, 517.272

MSC: 26A33, 26D10, 26A24

DOI: 10.36535/0233-6723-2021-198-103-108



© Steklov Math. Inst. of RAS, 2024