Abstract:
Field theories of the continuum mechanics and physics based on the least action principle are considered in a unified framework. Variation of the action integral in the least action principle corresponds variations of physical fields while space-time coordinates are not varied. However notion of the action invariance, theory of variational symmetries of action and conservation laws require a wider variation procedure including variations of the space-time coordinates. A similar situation is concerned to variational problems with strong discontinuities of field variables or other a priori unknown free boundaries which variations are not prohibited from the beginning. A form of the first variation of the action integral corresponding variations of space-time coordinates and field variables under one-parametrical transformations groups is obtained. This form is attributed to $4$-dimensional covariant formulations of field theories of the continuum mechanics and physics. The first variation of the action integral over a varied domain is given for problems with constraints. The latter are formulated on unknown free boundaries.
Key words:field, action, least action principle, field equations, transformation group, Lie group, infinitesimal generator, variation, varied domain, constraint.