RUS  ENG
Full version
JOURNALS // Moscow Mathematical Journal // Archive

Mosc. Math. J., 2001 Volume 1, Number 1, Pages 73–89 (Mi mmj13)

This article is cited in 5 papers

Random lattices and random sphere packings: typical properties

S. Shlosmanab, M. A. Tsfasmanbcd

a CNRS – Center of Theoretical Physics
b Institute for Information Transmission Problems, Russian Academy of Sciences
c Institut de Mathématiques de Luminy
d Independent University of Moscow

Abstract: We review results about the density of typical lattices in $\mathbb R^n$. This density is of the order of $2^{-n}$. We then obtain similar results for random (non-lattice) sphere packings in $\mathbb R^n$: after suitably taking a fraction $\nu$ of centers of spheres in a typical random packing $\sigma$, the resulting packing $\tau$ has density $C(\nu) 2^{-n}$ with a reasonable $C(\nu)$. We obtain estimates of $C(\nu)$.

Key words and phrases: Geometric density, random field, vertex covering number, sphere packing.

MSC: 82B05

Received: September 1, 2000; in revised form January 30, 2001

Language: English

DOI: 10.17323/1609-4514-2001-1-1-73-89



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025