RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1969 Volume 6, Issue 5, Pages 567–572 (Mi mzm6964)

On sequences of Fourier coefficients of functions of Hölder classes

G. S. Abros'kinaa, B. S. Mityaginb

a Voronezh State Pedagogical Institute
b Central Economics and Mathematics Institute, USSR Academy of Sciences

Abstract: The following theorem is proved. Let $\{\psi_l(t)\}$ be an arbitrary complete orthonormal system on $[0,1]$ and let $1/2<\alpha<1$. Then an $f(t)\in C_\beta$ exists for all $\beta<\alpha$ such that $\sum_{k=1}^\infty|c_k(f)|^p=\infty$, $p=2/(1+2\alpha)$, where $c_k(f)=\int\limits_0^1f\psi_k\,dt$.

UDC: 517.5

Received: 17.12.1968


 English version:
Mathematical Notes, 1969, 6:5, 800–803

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025