RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 12, Issue 2, Pages 155–156 (Mi mzm9862)

This article is cited in 1 paper

A problem of Ulam

V. V. Ermakov

M. V. Lomonosov Moscow State University

Abstract: Let $R$ be a set of positive integers with usual operations of addition and multiplication
$$ a+b=s(a,b);\quad a\cdot b=m(a,b);\quad a,b\in R. $$
A correspondence is set up between each one-to-one (Peano) mapping $p$ of the space $R\times R$ onto the whole of $R$ and the two functions
$$ \begin{aligned} \sigma(c)&=\sigma[p(a,b)]=s(a,b);\\ \mu(c)&=\mu[p(a,b)]=m(a,b). \end{aligned} $$
It is proved in this note that there can be no Peano mapping for which $\sigma(\mu(c))=\mu(\sigma(c))$ for all $c$ in $R$.

UDC: 511.2

Received: 18.11.1971


 English version:
Mathematical Notes, 1972, 12:2, 528–529

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025