RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 12, Issue 2, Pages 177–186 (Mi mzm9866)

This article is cited in 3 papers

The approximate solution of singular integral equations

I. V. Boikov

Kazan State University

Abstract: A computational scheme of collocation type is proposed for a singular linear integral equation with a power singularity in the regular integral and the justification is given. The results obtained are used to justify the approximate solution of the singular integral equation
$$ K(x)\equiv a(t)x(t)+\frac{b(t)}{\pi i}\int_{|\tau|=1}\frac{x(\tau)d\tau}{\tau-t}+ \frac1{2\pi i}\int_{|\tau|=1}\frac{h(t,\tau)x(\tau)}{|\tau-t|^\delta}d\tau=f(t) $$
by a modification of the method of minimal residuals.

UDC: 513.88

Received: 13.10.1970


 English version:
Mathematical Notes, 1972, 12:2, 541–546

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025