RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1972 Volume 12, Issue 3, Pages 239–242 (Mi mzm9873)

The right ideals of an alternative ring

K. A. Zhevlakov

Institute of Mathematics, Siberian Division, Academy of Sciences of the USSR

Abstract: It is proved that if $P$ is a right ideal and $I$ a two-sided ideal of an alternative ring $A$, then neither $P^2$ nor $IP$ is in general a right ideal of $A$. Moreover, it is shown that in the alternative ring $A$ the right annihilator of the right ideal $P$, i.e., the set $\mathfrak{Z}_r(P)=\{z\in A\mid Pz=0\}$, is not necessarily either a left or a right ideal, nor even a subring of $A$.

UDC: 519.48

Received: 30.03.1972


 English version:
Mathematical Notes, 1972, 12:3, 578–579

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025