Abstract:
For colloidal quantum-size particles (QP) of narrow-gap semiconductors, in contrast to quantum dots of wide-gap CdSe, in QP-PbS there take place an anomalous temperature dependence of the photoluminescence intensity. Also, in the planar microstructure containing QP-InSb, long-wavelength radiation (more than 3 $\mu$m) and photoconductivity (over 20 $\mu$m) was observed. Under certain conditions, the radiation intensity and photoconductivity demonstrate a resonance maximum. The effects were explained in the model of a one-dimensional quantum oscillator, which energy substantially depends on the effective mass of its quasi-free electron. This leads to competition between the manifestations of long-wave radiation and photoluminescence, and hence, to the anomalous temperature dependence of photoluminescence. It is assumed that QP-InSb in a planar microstructure can be sources and receivers of terahertz radiation, which properties depend on the crystal structure of quantum-sized particles determined by the parameters of their synthesis.