RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2021 Volume 18, Issue 2, Pages 1251–1260 (Mi semr1436)

This article is cited in 1 paper

Real, complex and functional analysis

On finding the exact values of the constant in a $(1,q_2)$-generalized triangle inequality for Box-quasimetrics on $2$-step Carnot groups with $1$-dimensional center

A. V. Greshnov

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia

Abstract: For $2$-step Carnot groups with $1$-dimensional center, a method for defining the exact values of the constant $q_2$ in a $(1,q_2)$-generalized triangle inequality for their Box-quasimetrics is developed. The exact values of the constant $q_2$ are defined for $4$-, $5$-, and $6$-dimensional $2$-step Carnot groups with $3$-dimensional horisontal subbundle.

Keywords: $(q_1,q_2)$-quasimetric spase, Carnot group, exact value, Box-quasimetric.

UDC: 517.518

MSC: 43A80

Received August 15, 2021, published November 18, 2021

Language: English

DOI: 10.33048/semi.2021.18.095



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025