RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2011 Volume 8, Pages 168–178 (Mi semr315)

This article is cited in 2 papers

Generic complexity of first-order theories

A. N. Rybalov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science

Abstract: Theory of generic complexity studies algorithmical problems for “almost all” inputs. A problem can be hard or undecidable in the worst case but feasible in the generic case. In this review we describe some recent results about generic complexity of the following first order theories: any undecidable first order theory (Mysnikov, Rybalov), ordered field of real numbers (Rybalov, Fedosov), Presburger arithmetic (Rybalov).

Keywords: generic complexity, first order theory.

UDC: 510.52

MSC: 03D80

Received July 4, 2011, published August 16, 2011



© Steklov Math. Inst. of RAS, 2025