Эта публикация цитируется в
3 статьях
Notes on Worldsheet-Like Variables for Cluster Configuration Spaces
Song Heabcde,
Yihong Wangdacf,
Yong Zhanggh,
Peng Zhaoa a CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences, 100190 Beijing, P.R. China
b International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, P.R. China
c School of Physical Sciences, University of Chinese Academy of Sciences,
No. 19A Yuquan Road, 100049 Beijing, P.R. China
d School of Fundamental Physics and Mathematical Sciences,
Hangzhou Institute for Advanced Study, UCAS, 310024 Hangzhou, P.R. China
e Peng Huanwu Center for Fundamental Theory, Hefei, 230026 Anhui, P.R. China
f Laboratoire d'Annecy-le-Vieux de Physique Théorique, Université Savoie Mont Blanc, 9 Chemin de Bellevue, 74941 Annecy-le-Vieux, France
g Perimeter Institute, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5, Canada
h Department of Physics and Astronomy, Uppsala University, 75108 Uppsala, Sweden
Аннотация:
We continue the exploration of various appearances of cluster algebras in scattering amplitudes and related topics in physics. The cluster configuration spaces generalize the familiar moduli space
${\mathcal M}_{0,n}$ to finite-type cluster algebras. We study worldsheet-like variables, which for classical types have also appeared in the study of the symbol alphabet of Feynman integrals. We provide a systematic derivation of these variables from
$Y$-systems, which allows us to express the dihedral coordinates in terms of them and to write the corresponding cluster string integrals in compact forms. We mainly focus on the
$D_n$ type and show how to reach the boundaries of the configuration space, and write the saddle-point equations in terms of these variables. Moreover, these variables make it easier to study various topological properties of the space using a finite-field method. We propose conjectures about quasi-polynomial point count, dimensions of cohomology, and the number of saddle points for the
$D_n$ space up to
$n=10$, which greatly extend earlier results.
Ключевые слова:
cluster algebras, generalized associahedra,
$Y$-systems, string amplitudes.
MSC: 13F60,
05E14,
81T30 Поступила: 21 ноября 2022 г.; в окончательном варианте
29 июня 2023 г.; опубликована
12 июля 2023 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2023.045