RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 003, 21 стр. (Mi sigma2120)

Comomentum Sections and Poisson Maps in Hamiltonian Lie Algebroids

Yuji Hirotaa, Noriaki Ikedab

a Division of Integrated Science, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
b Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Аннотация: In a Hamiltonian Lie algebroid over a pre-symplectic manifold and over a Poisson manifold, we introduce a map corresponding to a comomentum map, called a comomentum section. We show that the comomentum section gives a Lie algebroid morphism among Lie algebroids. Moreover, we prove that a momentum section on a Hamiltonian Lie algebroid is a Poisson map between proper Poisson manifolds, which is a generalization that a momentum map is a Poisson map between the symplectic manifold to dual of the Lie algebra. Finally, a momentum section is reinterpreted as a Dirac morphism on Dirac structures.

Ключевые слова: Poisson geometry, momentum maps, Poisson maps, Dirac structures.

MSC: 53D17, 53D20, 53D05

Поступила: 16 июня 2024 г.; в окончательном варианте 29 декабря 2024 г.; опубликована 5 января 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.003


ArXiv: 2405.03533


© МИАН, 2025