RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 007, 25 стр. (Mi sigma2124)

Numerators in Parametric Representations of Feynman Diagrams

Marc P. Bellon

Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Energies, Paris, France

Аннотация: The parametric representation has been used since a long time for the evaluation of Feynman diagrams. As a dimension independent intermediate representation, it allows a clear description of singularities. Recently, it has become a choice tool for the investigation of the type of transcendent numbers appearing in the evaluation of Feynman diagrams. The inclusion of numerators has however stagnated since the ground work of Nakanishi. I here show how to greatly simplify the formulas through the use of Dodgson identities. In the massless case in particular, reduction to the completion to a vacuum graph allows for a strong reduction of the maximal power of the Symanzik polynomial in the denominator.

Ключевые слова: Feynman integrals, parametric representation, Dodgson identities.

MSC: 81T18, 81Q30, 15A15

Поступила: 23 мая 2024 г.; в окончательном варианте 24 января 2025 г.; опубликована 6 февраля 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.007


ArXiv: 2207.05028


© МИАН, 2025