Аннотация:
Interpreting tangency as a limit of two transverse intersections, we obtain a concrete formula to enumerate smooth degree $d$ plane curves tangent to a given line at multiple points with arbitrary order of tangency. Extending that idea, we then enumerate curves with one node with multiple tangencies to a given line of any order. Subsequently, we enumerate curves with one cusp, that are tangent to first order to a given line at multiple points. We also present a new way to enumerate curves with one node; it is interpreted as a degeneration of a curve tangent to a given line. That method is extended to enumerate curves with two nodes, and also curves with one tacnode are enumerated. In the final part of the paper, it is shown how this idea can be applied in the setting of stable maps and perform a concrete computation to enumerate rational curves with first-order tangency. A large number of low degree cases have been worked out explicitly.
Ключевые слова:
enumeration of curves, tangency, nodal curve, cusp.