RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 130(172), Number 4(8), Pages 500–519 (Mi sm1889)

This article is cited in 16 papers

Quasianalytical classes of functions in convex domains

R. S. Yulmukhametov


Abstract: Let $D$ be a bounded convex domain lying in the left-hand half-plane, with $0\in\overline D$. A class $H(D,M_n)$, consisting of functions analytic in $D$ and satisfying the inequalities
$$ \max_{z\in D}|f^{(n)}(z)|\leqslant C_fM_n,\qquad n=0,1,\dots, $$
is said to be quasianalytic at $z=0$ if $H(D,M_n)$ contains no functions that vanish with all their derivatives at $z=0$.
Let $h(\varphi)=\max_{\lambda\in D}\operatorname{Re}\lambda e^{i\varphi}$ and $h(\varphi)=0$, $\varphi\in[\sigma_-,\sigma_+]$, and let
\begin{gather*} \Delta_+(\alpha)=\sqrt{\alpha-\sigma_+}\biggl(h'(\alpha)+\int^\alpha_{\sigma_+}h(\theta)\,d\theta\biggr),\qquad\sigma_+<\alpha<\frac\pi2, \\ \Delta_-(\alpha)=-\sqrt{\sigma_--\alpha}\biggl(h'(\alpha)+\int_{\sigma_-}^\alpha h(\theta)\,d\theta\biggr),\qquad-\frac\pi2<\alpha<\sigma_-, \\ v_1(x)=\exp\int_{x_1}^x\frac{2\pi-\Delta_+^{-1}(y)+\Delta_-^{-1}(y)}{-\pi+\Delta_+^{-1}(y)-\Delta_-^{-1}(y)}\cdot\frac{dy}y,\qquad x\to0,\quad x_1>0. \end{gather*}
It is shown that the condition
$$ \int_1^\infty\frac{\ln T(r)}{v(r)\cdot r^2}\,dr=+\infty, $$
where $T(r)=\sup r^nM_n^{-1}$ is the trace function of the sequence $(M_n)$, and $v(r)$ is the inverse of $v_1(x)$, is necessary and sufficient for the quasianalyticity of $H(D,M_n)$.
This theorem generalizes the classical Denjoy–Carleman theorem. In the case when $D=\bigl\{z:|\arg z|<\frac\pi{2\gamma}\bigr\}$ the theorem follows from Salinas's results of 1955. For $D=\{z:|z+1|=1\}$ the theorem was proved by Korenblyum in 1965.
Bibliography: 9 titles.

UDC: 517.548.3

MSC: 26E10, 30B60, 30E10

Received: 30.04.1985


 English version:
Mathematics of the USSR-Sbornik, 1987, 58:2, 505–523

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025