RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1984 Volume 123(165), Number 3, Pages 422–430 (Mi sm2029)

This article is cited in 137 papers

The tensor algebra of the identity representation as a module over the Lie superalgebras $\mathfrak Gl(n,m)$ and $Q(n)$

A. N. Sergeev


Abstract: Let $T$ be the tensor algebra of the identity representation of the Lie superalgebras in the series $\mathfrak Gl$ and $Q$. The method of Weyl is used to construct a correspondence between the irreducible representations (respectively, the irreducible projective representations) of the symmetric group and the irreducible $\mathfrak Gl$- (respectively, $Q$-) submodules of $T$. The properties of the representations are studied on the basis of this correspondence. A formula is given for the characters on the irreducible $Q$-submodules of $T$.
Bibliography: 8 titles.

UDC: 512

MSC: Primary 17A70, 17B10; Secondary 15A72, 20C30

Received: 22.04.1983


 English version:
Mathematics of the USSR-Sbornik, 1985, 51:2, 419–427

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025