RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 86(128), Number 2(10), Pages 314–324 (Mi sm3297)

This article is cited in 17 papers

On best approximations by rational functions with a fixed number of poles

K. N. Lungu


Abstract: Estimates are obtained for the rate of the approximation of functions $f$ continuous on the interval $[0,1]$ and permitting bounded analytic continuation into the circle $K=\bigl\{z:|z-1|<1\bigr\}$ by means of rational functions with a fixed number of geometrically different poles.
Figures: 2.
Bibliography: 7 titles.

UDC: 517.512

MSC: 41A20, 41A25, 41A50

Received: 12.01.1971


 English version:
Mathematics of the USSR-Sbornik, 1971, 15:2, 313–324

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025