RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2021 Volume 212, Number 3, Pages 88–111 (Mi sm9388)

This article is cited in 1 paper

General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case

S. Moriabc, Yu. G. Prokhorovd

a Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
b Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
c Chubu University Academy of Emerging Sciences, Chubu University, Aichi, Japan
d Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: Let $(X, C)$ be a germ of a threefold $X$ with terminal singularities along a connected reduced complete curve $C$ with a contraction $f \colon (X, C) \to (Z, o)$ such that $C = f^{-1} (o)_{\mathrm{red}}$ and $-K_X$ is $f$-ample. Assume that each irreducible component of $C$ contains at most one point of index ${>2}$. We prove that a general member $D\in |{-}K_X|$ is a normal surface with Du Val singularities.
Bibliography: 16 titles.

Keywords: terminal singularity, extremal curve germ, flip, divisorial contraction, $\mathbb{Q}$-conic bundle.

UDC: 512.76

MSC: Primary 14E30; Secondary 14J30, 14J17

Received: 25.02.2020 and 27.11.2020

DOI: 10.4213/sm9388


 English version:
Sbornik: Mathematics, 2021, 212:3, 351–373

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025