RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 2, Pages 298–325 (Mi smj7557)

This article is cited in 8 papers

The coarea formula for vector functions on Carnot groups with sub-Lorentzian structure

M. B. Karmanova

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We establish the coarea formula as an expression for the measure of a subset of a Carnot group in terms of the sub-Lorentzian measure of the intersections of the subset with the level sets of a vector function. We describe the conditions for the level sets of vector functions to be spacelike and find the metric characteristics of these surfaces. Also, we address a series of relevant questions, in particular, about the uniqueness of the coarea factor.

Keywords: Carnot group, sub-Lorentzian structure, vector function, level set, sub-Lorentzian measure, coarea formula.

UDC: 517.518.182+517.518.114+514.7

MSC: 35R30

Received: 08.06.2020
Revised: 03.10.2020
Accepted: 09.10.2020

DOI: 10.33048/smzh.2021.62.205


 English version:
Siberian Mathematical Journal, 2021, 62:2, 239–261

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025