RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 6, Pages 1357–1368 (Mi smj7633)

This article is cited in 4 papers

Kulakov algebraic systems on groups

M. V. Neshchadimab, A. A. Simonovb

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We define a Kulakov algebraic system as a three-sorted algebraic system satisfying the axioms of a physical structure. We prove a strong version of Ionin's Theorem on the equivalence of the rank $(2,2)$ physical structure to the structure of an abstract group. We consider nongroup Kulakov algebraic systems and characterize Kulakov algebraic systems over arbitrary groups.

Keywords: Kulakov algebraic system, physical structure, three-sorted algebra, group, semigroup, groupoid, loop.

UDC: 512.74+512.643.8

MSC: 35R30

Received: 11.03.2021
Revised: 22.06.2021
Accepted: 11.08.2021

DOI: 10.33048/smzh.2021.62.611


 English version:
Siberian Mathematical Journal, 2021, 62:6, 1100–1109

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025