RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 221, Number 3, Pages 642–653 (Mi tmf10779)

Maurer–Cartan methods in perturbative quantum mechanics

A. S. Loseva, T. Sulimovb

a Shanghai Institute for Mathematics and Interdisciplinary Sciences, Shanghai, China
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We reformulate the time-independent Schrödinger equation as a Maurer–Cartan equation on the superspace of eigensystems of the former equation. We then twist the differential such that its cohomology becomes the space of solutions with a fixed energy. A perturbation of the Hamiltonian corresponds to a deformation of the twisted differential, leading to a simple recursive relation for the eigenvalue and eigenfunction corrections.

Keywords: quantum mechanics, perturbation theory, eigenvalue problem, Maurer–Cartan equation, cohomology, homotopy.

Received: 25.06.2024
Revised: 25.06.2024

DOI: 10.4213/tmf10779


 English version:
Theoretical and Mathematical Physics, 2024, 221:3, 2155–2164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025