RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 155, Number 2, Pages 236–243 (Mi tmf6207)

Matrix and vector models in the strong coupling limit

D. V. Bykova, A. A. Slavnovb

a M. V. Lomonosov Moscow State University, Faculty of Physics
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We consider matrix and vector models in the large-$N$ limit: we study $N\times N$ matrices and vectors with $N^2$ components. In the case of a zero-dimensional model $(D=0)$, we prove that in the strong coupling limit $(g\to\infty)$, the partition functions of the two models coincide up to a coefficient. This also holds for $D=1$.

Keywords: matrix model, vector model, $1/N$ expansion.

Received: 05.09.2007

DOI: 10.4213/tmf6207


 English version:
Theoretical and Mathematical Physics, 2008, 155:2, 708–714

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025