RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1979 Volume 24, Issue 1, Pages 191–198 (Mi tvp974)

This article is cited in 7 papers

Short Communications

Conditioned stable random walk with a negative drift

V. I. Afanas'ev

Moscow

Abstract: Let $(S_n, n\ge 0)$ be a random walk with a negative drift, $T=\min\{n\colon S_n\le 0\}$. We prove that if the Cramer's type conditions are satisfied then there exists a constant $\Delta>0$ such that the random functions $S_{[nt]}/ \Delta n^{1/2}$, $0\le t\le 1$ considered under the condition $T>n$, converge weakly to a Brownian excursion when $n\to\infty$.

Received: 23.12.1977


 English version:
Theory of Probability and its Applications, 1979, 24:1, 192–199

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024