Эта публикация цитируется в
3 статьях
Solvability of higher order three-point iterative systems
K. R. Prasada,
M. Rashmitaa,
N. Sreedharb a Department of Applied Mathematics,
College of Science and Technology,
Andhra University,
Visakhapatnam, 530 003, India
b Department of Mathematics,
Institute of Science,
GITAM (Deemed to be University),
Visakhapatnam, 530 045, India
Аннотация:
In this paper, we consider an iterative system of nonlinear
$n^{\text{th}}$ order differential equations:
$$
y_i^{(n)}(t)+\lambda_i p_i(t)f_i(y_{i+1}(t))=0,\qquad 1\leq i\leq m,\qquad y_{m+1}(t)= y_1(t),\qquad t\in[0,1],
$$
with three-point non-homogeneous boundary conditions
$$
\begin{gathered}
y_i(0)={y_i}'(0)=\cdots=y_i^{(n-2)}(0)=0,
\\
\alpha_iy_i^{(n-2)}(1)-\beta_i y_i^{(n-2)}(\eta)=\mu_i,\qquad 1\leq i\leq m,
\end{gathered}
$$
where
$n\geq 3,$ $\eta\in (0,1)$,
$\mu_i\in (0, \infty)$ is a parameter,
$f_i:\mathbb{R}^+ \rightarrow \mathbb{R}^+ $ is continuous,
$p_i:[0,1] \rightarrow \mathbb{R}^+$ is continuous and
$p_i$ does not vanish identically on any closed subinterval of
$[0,1]$ for
$1\leq i\leq m$.
We express the solution of the boundary value problem as a solution of an equivalent integral equation involving kernels and
obtain bounds for these kernels. By an application of Guo–Krasnosel'skii fixed point theorem on a cone in a Banach space, we determine intervals
of the eigenvalues
$\lambda_1,\lambda_2,\cdots,\lambda_m$ for which the boundary value problem possesses a positive solution.
As applications, we provide examples demonstrating our results.
Ключевые слова:
boundary value problem, iterative system, kernel, three-point, eigenvalues, cone, positive solution.
УДК:
517.958
MSC: 334B18,
34A40,
34B15 Поступила в редакцию: 12.12.2019
Язык публикации: английский