Abstract:
The paper is devoted to a study of coupled harmonic thermoelastic impulse guided propagation through an infinite circular cylinder. Heat interchanging is supposed to take place between sidewall of the waveguide and environment. The analysis is carried out according to the principles of coupled generalized thermoelasticity theory of type III (GNIII-thermoelasticity). This theory combines thermodiffusion and wave mechanisms of heat transfer in solids including as limiting cases both the theories: classical thermoelasticity (GNI/CTE) and the theory of hyperbolic thermoelasticity (GNII). The latter permits field-theoretic formulation and leads to the field equations of hyperbolic analytical type. Closed solution of the coupled GNIII-thermoelasticity equations satisfying the boundary conditions on the surface of waveguide is obtained by separation of variables. The analysis of frequency equation is given and wave numbers and modes of coupled thermoelastic waves of arbitrary order are obtained. The problems of coupled thermal and dynamic impulse propagation in the form of plane and normal waves in a free from tractions thermoisolated waveguide have been studied in our previous papers.
Keywords:thermoelasticity, GNIII-thermoelasticity, frequency equation, waveguide, wavenumber, wave mode.