RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 263, Pages 84–104 (Mi znsl1137)

This article is cited in 2 papers

The problems on extremal decomposition in spaces of Riemann surfaces

E. G. Emel'yanov

St. Petersburg State University of Economics and Finance

Abstract: An extension of a theorem on extremal decomposition of a Riemann surface is obtained. The problem of extremal decomposition is extended from the case of a Riemann surface $\Re$ with a prescribed set $P\subset \Re$ of distinguished points to the case of the Teichmüller space $T_\Re'$ of Riemann surfaces $\widehat{\Re}$ corresponding to $\Re$ under quasiconformal homeomorphisms $f$. For the functional $\mathscr M$ of our problem on extremal decomposition of a surface $\widehat{\Re}$, we consider a function $\mathscr M^*(x)$ expressing the dependence of the extremal value of $\mathscr M$ on a point $x\in T_{\Re'}$ . Differentiation formulas for the function $\mathscr M^*(x)$ are derived. These formulas are different and depend on the genus $g$ of the surface $\mathscr M$. The case where the function $\mathscr M^*(x)$ is pluriharmonic is considered.

UDC: 517.54

Received: 10.11.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 110:6, 3078–3090

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024