RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 263, Pages 141–156 (Mi znsl1139)

This article is cited in 1 paper

Estimates for conformal radius and distortion theorems for univalent functions

L. V. Kovalev

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: A simple proof of the recent result by E. G. Emel'yanov concerning the maximum of the conformal radius $r(D,1)$ for a family of simply connected domains with a fixed value $r(D,0)$ is given. A similar problem is solved for a family of convex domains. Exact estimates for functionals of the form $|g'(w)|/|g(w)|^{\delta}$ are obtained for families of functions inverse to elements of the classes $S$ and $S_m$, where $S=\{f:f\text{ is regular and univalent in the disk }\{z:|z|<1\}\text{ and }f(0)=f'(0)-1=0\}$ and $S_M=\{f\in S:|f(z)|<M\text{ for }|z|<1\}$.

UDC: 517.54

Received: 12.07.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 110:6, 3111–3120

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024