RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 263, Pages 205–225 (Mi znsl1143)

This article is cited in 8 papers

The order of the Epstein zeta-function in the critical strip

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $Q(x_1,\dots,x_k)$ be a positive quadratic form of $k\ge2$ variables and let $\zeta(s;Q)$ be the Epstein zeta-function of the form $Q$. The growth rate of $\zeta(s;Q)$ on the line $\operatorname{Re}s=(k-1)/2$ is investigated. For $k\ge4$ and for an integral form $Q$, the problem is reduced to a similar problem on the behavior of the Dirichlet $L$-series on the line $\operatorname{Re}s=1/2$. In the case $k=3$, the diagonal form over $\mathbb R$ is investigated by the van der Corput method. For $k=2$, the known result due to Titchmarsh is re-proved by using a variant of the van der Corput method given by Heath-Brown.

UDC: 511.466+517.863

Received: 23.11.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 110:6, 3150–3163

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024