RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2000 Volume 263, Pages 226–236 (Mi znsl1144)

This article is cited in 4 papers

The distribution of lattice points on the four-dimensional sphere

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $r_l(n)$ be the number of representations of $n$ by a sum of $l$ squares of integers and let $0<A<1$ be a constant. It is proved that if $(n,2)=1$, then $\sum_{-A\le w/\sqrt n\le A} r_3(n-w^2)=\mu_4(A)r_4(n)+O(n^{1487/2000}),\mu_4(A)>0$. Previously, the author obtained this asymptotics with a weaker error term $O(n^{3/4+\varepsilon})$.

UDC: 511.466+517.863

Received: 15.12.1999


 English version:
Journal of Mathematical Sciences (New York), 2002, 110:6, 3164–3170

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024