RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 341, Pages 68–80 (Mi znsl134)

This article is cited in 5 papers

Limit correlation functions at zero for fixed trace random matrix ensembles

F. Götzea, M. I. Gordinb, A. Levinac

a Bielefeld University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c Max Planck Institute for Dynamics and Self-Organization

Abstract: The large-$N$ limit of the eigenvalue correlation functions is examined in a neighborhood of zero for the spectra of $N\times N-$Hermitian matrices chosen at random from the Hilbert–Schmidt sphere of appropriate radius. Dyson's famous $\sin\pi(t_1-t_2)/\pi(t_1-t_2)$-kernel asymptotics is extended to this class of random matrix ensembles.

UDC: 519.2

Received: 29.03.2007


 English version:
Journal of Mathematical Sciences (New York), 2007, 147:4, 6884–6890

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024