RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2001 Volume 276, Pages 300–311 (Mi znsl1423)

This article is cited in 9 papers

On the behavior of automorphic $L$-functions at the center of the critical strip

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\mathscr F$ be the Hecke eigenbasis of the space $S_2(\Gamma_0(p))$ of $\Gamma_0(p)$-cusp forms of weight 2. Let $p$ be a prime. Let $\mathscr H_f(s)$ be the Hecke $L$-series of form $f\in\mathscr F$. The following statements are proved:
$$ \sum_{f\in\mathscr F}\mathscr H_f\left(\frac12\right)=\zeta(2)\frac p{12}+O\left(p^{\frac{31}{32}+\varepsilon}\right) $$
and
$$ \sum_{f\in F}\mathscr H_f\left(\frac12\right)^2=\frac{\zeta(2)^3}{\zeta(4)}\frac p{12}\log p+O(p\log\log p). $$
We also give a correct proof of a previous author's theorem on automorphic $L$-functions.

UDC: 511.466+517.863

Received: 12.02.2001


 English version:
Journal of Mathematical Sciences (New York), 2003, 118:1, 4910–4917

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024