RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 284, Pages 5–17 (Mi znsl1534)

This article is cited in 3 papers

Powers of sign portraits of real matrices

Yu. A. Alpin, S. N. Il'in

Kazan State University

Abstract: The sign portrait $S$ of a real $n\times n$ matrix is a matrix over the semiring with elements $0,1,-1$ and $\theta$, where $\theta$ symbolizes indeterminateness. It is proved that if $k$ is the least positive integer such that all the entries of $S^k$ are equal to $\theta$ then $k\le2n^2-3n+2$, and this bound is sharp.

UDC: 512.643

Received: 04.02.2002


 English version:
Journal of Mathematical Sciences (New York), 2004, 121:4, 2441–2447

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024