RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 284, Pages 48–63 (Mi znsl1537)

This article is cited in 3 papers

On Brualdi's theorem

L. Yu. Kolotilina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: This paper studies irreducible matrices $A=(a_{ij})\in\mathbb C^{n\times n}$, $n\ge2$, satisfying Brualdi's conditions
$$ \prod_{i\in\overline\gamma}|a_{ii}|\ge\prod_{i\in\overline\gamma}R_i(A), \quad \gamma\in\mathfrak C(A), $$
or, shortly, Brualdi matrices. Here, $R_i(A)=\sum\limits_{i\ne j}|a_{ij}|$, $i=1,\dots,n$; $\mathfrak C(A)$, is the set of circuits of length $k\ge2$ in the directed graph of $A$, and $\overline\gamma$ is the support of $\gamma$.
Among the results obtained are a characterization of Brualdi's matrices, implying, in particular, that they are generalized diagonally domiant; necessary and sufficient conditions of singularity for Brualdi matrices; explicit expressions for the absolute values of the components of right null-vectors of a singular Brualdi matrix, and conditions necessary and sufficient for a boundary point of Brualdi's inclusion region to be an eigenvalue of an irreducible matrix.

UDC: 512.643

Received: 16.10.2001


 English version:
Journal of Mathematical Sciences (New York), 2004, 121:4, 2465–2473

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024