RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 286, Pages 36–39 (Mi znsl1564)

This article is cited in 2 papers

On the Pellian equation

E. P. Golubeva

St. Petersburg State University of Telecommunications

Abstract: Let $\varepsilon(d)$ be the least solution of the Pellian equation $x^2-dy^2=1$. It is proved that there exists a sequence of values of $d$ having a positive density and such that $\varepsilon(d)>d^{2-\delta}$, where $\delta$ is an arbitrary positive constant.

UDC: 511.622

Received: 29.08.2002


 English version:
Journal of Mathematical Sciences (New York), 2004, 122:6, 3600–3602

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024