RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 286, Pages 40–47 (Mi znsl1565)

This article is cited in 1 paper

On the class numbers of indefinite binary quadratic forms with discriminant $dp^2$

E. P. Golubeva

St. Petersburg State University of Telecommunications

Abstract: A number of results on the average values of the class numbers of indefinite binary quadratic forms with discriminants divisible by a large square are proved. The main result is as follows. Let $d=4n^2+1$. Then
$$ \mathop{{\sum}'}_{1\le n\le X}\frac1{h(d)}\sum_{2X\le p\le3X}h(dp^2)=O(X^2), $$
where $h(d)$ is the class number for the discriminant $d$ and $\sum'$ means that the summation is performed over the square-free $d$ only.

UDC: 511.622

Received: 25.12.2001


 English version:
Journal of Mathematical Sciences (New York), 2004, 122:6, 3603–3607

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024