RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 286, Pages 200–214 (Mi znsl1577)

The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $S_k(\Gamma_0(N))$ be the space of cusp forms of even weight $k$ for $\Gamma_0(N)$, let $\mathscr F_0$ be the set of all newforms in $S_k(\Gamma_0(N))$, and let $\mathscr H_2(s,f)$ be the symmetric square of the Hecke $L$-function of a form $f\in\mathscr F_0$. It is proved that for $N=p$ we have
$$ \sum_{f\in\mathscr F_0,\mathscr H_2(1/2,f)\ne0}1\gg N^{1-\varepsilon}, $$
where the $\ll$-constant depends only on $\varepsilon$ and $k$. Let $f(z)\in S_k(\Gamma(N))$:
$$ f(z)=\sum^{\infty}_{n=1}a_f(n)e^{2\pi inz}, \qquad a_f(n)n^{-(k-1)/2}=b_f(n). $$
The distribution of values of the sums
$$ \sum_{n\le X}b_f(n) \quad\text{and}\quad \sum_{n\le X}b_f(n)^2 $$
for increasing $X$ and $N$ is studied.

UDC: 511.466+517.683

Received: 06.05.2002


 English version:
Journal of Mathematical Sciences (New York), 2004, 122:6, 3699–3708

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024