RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2002 Volume 289, Pages 57–62 (Mi znsl1595)

Variations on a theme of Higman

N. A. Vavilov, V. A. Petrov

Saint-Petersburg State University

Abstract: Let R be an associative ring with 1, $n\ge3$ We show that Higman's computation of the first cohomology group of the special linear group over a field with natural coefficients really shows that $H^1(\operatorname{St}(n,R),R^n)=0$ for $n\ge4$ and explicitly compute this group for $n=3$, when it does not vanish. In [6] the second-named author extended these results to all classical Steinberg groups.

UDC: 512.5+512.6+512.7+512.8

Received: 10.06.2002


 English version:
Journal of Mathematical Sciences (New York), 2004, 124:1, 4708–4710

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024