RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 116, Pages 63–67 (Mi znsl1751)

This article is cited in 1 paper

Subgroups of a finite group whose algebra of invariants is a complete intersection

N. L. Gordeev


Abstract: Let $G$ be a finite subgroup of $GL(V)$, where $V$ is a finite-dimensional vector space over the field $K$ and $\operatorname{char}K\nmid|G|$. We show that if the algebra of invariants $K(V)^G$ of the symmetric algebra of $V$ is a complete intersection then $K(V)^H$ is also a complete intersection for all subgroups $H$ of $G$ such that $H=\{\sigma\in G|\sigma(v)=v\text{\rm{ for all }}v\in V^H\}$.

UDC: 512.7


 English version:
Journal of Soviet Mathematics, 1984, 26:3, 1872–1875

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024