RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 116, Pages 74–85 (Mi znsl1753)

This article is cited in 16 papers

Modular forms and representations of symmetric groups

A. A. Klyachko


Abstract: We give an interpretation of the coefficients of some modular forms in terms of modular representations of symmetric groups. Using this we can obtain asymptotic formulas for the number of blocks of the symmetric group $S_n$ over a field of characteristic $p$ for $n\to\infty$. For $p\leqslant7$ we give simple explicit formulas for the number of blocks of defect zero. The study of the modular forms leads to interesting identities involving the Dedekind $n$-function.

UDC: 511, 512.7


 English version:
Journal of Soviet Mathematics, 1984, 26:3, 1879–1887

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024