RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1982 Volume 116, Pages 86–95 (Mi znsl1754)

This article is cited in 1 paper

Some analogies of the Hardy–Littlewood equation

F. B. Koval'chik


Abstract: We derive an asymptotic expansion for the number of representations of an integer $\mathscr N$ in the form
$$ \mathscr N=\ell_1(p,q)+\ell_2(x,y), $$
where $p,q$ are odd primes, $x,y$ are integers, $\ell _1$ and $\ell_2$ are arbitrary primitive quadratic forms with negative discriminant. The equation $\mathscr N=p^2+q^2+x^2+y^2$ was studied earlier by V. A. Plaksin (RZhMat, 1981, 8A135) who used the methods of C. Hooley (RZhMat, 1958, 5451) and Linnik's dispersion method. The author follows Hooley without the use of the dispersion method. The proof is relatively simple.

UDC: 511.3


 English version:
Journal of Soviet Mathematics, 1984, 26:3, 1887–1894

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024