RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1976 Volume 64, Pages 127–130 (Mi znsl1878)

This article is cited in 21 papers

One theorem of Cohn

A. A. Suslin


Abstract: Let $F$ be the field of algebraic functions of one variable over the field of constants $k$, $v$ be a point of field $F/k$, and $A_v$ be the ring of functions not having poles outside point $v$. It is proved that $A_v$ is a $GE_2$-ring if and only if it coincides with the ring $k[x]$ of polynomials of one variable over field $k$.

UDC: 519.46


 English version:
Journal of Soviet Mathematics, 1981, 17:2, 1801–1803

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024