This article is cited in
11 papers
On limiting regime for modified Navier–Stokes equations in three-dimensional space
O. A. Ladyzhenskaya
Abstract:
The description of the limit-set
$\mathfrak{M}_R$ (when
$t\to\infty$) for all solutions of the system
$$
\frac{\partial\vec v}{\partial t}-\nu\Delta\vec{v}+\sum_{k=1}^3
v_k\frac{\partial\vec{v}}{\partial x_k}+\operatorname{grad}{p}
=\vec{f},
\quad\operatorname{div}\vec{v}=0,
$$
where $\nu=\mu_0+\mu_1\int_\Omega\vec{v}^{\,2}_x(x,t)\,dx$,
$\mu_i=\operatorname{const}>0$ and
$\Omega$ is bounded, which start at
$t=0$ from the points of the ball
$K_R=\{\vec{a}(x):\vec{a}(x)\in\overset\circ{J}(\Omega),\|\vec{a}\|_{2,\Omega}\leq{R}\}$ is given. Particullary, it is proved, that the semi-group
$V_t$,
$t\geq0$, corresponding to this problem, may be extended
to the group
$V_t$,
$t\in\mathbb R^1$, which has some interesting properties.
UDC:
517.99