RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1979 Volume 84, Pages 131–146 (Mi znsl2939)

This article is cited in 11 papers

On limiting regime for modified Navier–Stokes equations in three-dimensional space

O. A. Ladyzhenskaya


Abstract: The description of the limit-set $\mathfrak{M}_R$ (when $t\to\infty$) for all solutions of the system
$$ \frac{\partial\vec v}{\partial t}-\nu\Delta\vec{v}+\sum_{k=1}^3 v_k\frac{\partial\vec{v}}{\partial x_k}+\operatorname{grad}{p} =\vec{f}, \quad\operatorname{div}\vec{v}=0, $$
where $\nu=\mu_0+\mu_1\int_\Omega\vec{v}^{\,2}_x(x,t)\,dx$, $\mu_i=\operatorname{const}>0$ and $\Omega$ is bounded, which start at $t=0$ from the points of the ball $K_R=\{\vec{a}(x):\vec{a}(x)\in\overset\circ{J}(\Omega),\|\vec{a}\|_{2,\Omega}\leq{R}\}$ is given. Particullary, it is proved, that the semi-group $V_t$, $t\geq0$, corresponding to this problem, may be extended to the group $V_t$, $t\in\mathbb R^1$, which has some interesting properties.

UDC: 517.99


 English version:
Journal of Soviet Mathematics, 1983, 21:3, 345–356

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024